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Fig. 1. Elevation angle (λ) geometry

Fig. 2. Geometry from 
observer to horizon.
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  Determining Elevation Angles Paul K. Sherard  © 2014
I. Introduction
This problem involves determining the angle above the horizon for a distant object.  An example is observing distant
mountains above one’s horizon.  The mountains may in fact be beyond the observer’s horizon but are visible because
they rise well above sea level.  The premise then for this exercise is to consider the object height (such as a mountain
top) above sea level to be fixed.  There are then two parameters that the observer can adjust that will determine
whether the object will be in view or not.  Namely, the observer’s height above sea level and the distance between
the object and observer.  We will not only determine whether the object can be viewed or not by the observer, but
also calculate the elevation angle: the angle of the object, in degrees, above or below the observer’s horizon.

II. Elevation Angle Geometry
In order to determine the elevation angle of an object at an for observer
a different position and height we must consider the necessary geometry that
describes the situation.  Here will only be consider whether an object is
viewable; that is, potentially visible.  An object that is not viewable will be
defined as one that is below the observer’s viewable horizon.

Fig. 1 shows the geometry involved in determine the elevation angle. 
Parameters shown in Fig. 1 defined:
h1: observer height above sea level.
h2: object height above sea level.
d1:  distance to observer's horizon.
d2 : distance form observer's horizon to the object
d : total distance from observer to object.
z1:  linear distance of observer’s horizon (as viewed form observer's position).
z2: linear distance of object’s horizon (as viewed form object’ position).
d2

': linear distance of object beyond observer’s horizon.
h2

': Intersection of observers line of sight with height of object.
l : line of sight from the position of observer to object's position.

R:  radius of  Earth = 3960 mi = 6378 km.
λ : elevation angle  (angle of object above observer’s horizon).

Based on Fig. 2, we can approximate to excellent accuracy that the opposite side 
is equal to  the curved distance d1.  Thus from the right triangle shown in Fig. 2:

We can assume that h1 << R, therefore we can remove the h1
2 term and also cancel th R2 terms.  

Thus, the observer’s horizon distance z1 can be written as:

We can make the identical argument for determining the object’s effective horizon distance z2 (the horizon distance
that would be observed from the position of the object):

Since the elevation angle λ is a small angle, we see, by excellent approximation, d2' << R, thus d2' ~ d2 . And since 
h1 << R,  d1 ~ z1, thus the total distance from the observer's position can be written as:

Where, d2 is the from the observer’s horizon to the object, as shown in Fig. 1.  Our goal now is to determine the elevation
angle λ as a function of h1 , h2 , and d.  That is, what is the angle above the horizon of an object, such as a mountain
top, for an observer at a particular elevation and distance from the object?
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Fig. 4 Elevation angle λ.
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Fig. 3. Geometry over observer’s
horizon.
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From Fig. 1, we can see the triangle represented in Fig. 3, where:

Expanding:

 
Removing higher order term (h2')2 on right-hand side (since h2' << R) 
and canceling the R2 terms yields

Thus:

                              

From Eq. (5) we see that d2 = d ! z1 so we can rewrite Eq. 9 as:

III. Solution
From the geometry shown in Fig. 4 we consider λ ~ small.
Then to good approximation we can assume a right triangle, thus:

                             
 

Since, typically, h2 - h2' << d (height of the object is much less than the distance to object),  tan(λ) . λ.  
Therefore, we can write to a good approximation:

By substitution from Eq. (10):

Where, from Eq. (4), z2
2  = 2Rh2 , thus:

Where:
z1: distance to observer’s horizon,  .z Rh1 12=

z2: distance of object’s horizon (as viewed form object’ position),  .z Rh2 2 2=

d : total distance from the observer to the object in miles.
R: radius of  Earth = 3960 mi

*Note that this solution yields λ in radians. To convert to degrees multiply result by 180o/π ~ 57.3o. 

(10)

(11)

(12)

(13)

*Elevation
 Angle
 Formula

(14)
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Fig. 5. Top figures: Horizons of observer and object for an object a distance d away from observer. 
Bottom figures: Line of sight for various horizon configurations.

IV. Limits
Now we can ask, what is the minimum distance dmin  that an observer at height h1 can be from an object of height h2
and still remain viewable?  This will occur when λ = 0 (object is just on the horizon).  This means that if d (the
distance from the observer to the object) is less than dmin the object will be below the horizon and not veiwable. 
Thus from the elevation angle formula, Eq. (14), our condition for λ = 0 is:

Since d $ z1, {that is, our solution [Eq. (14)] assumes the object is on or beyond the observer’s horizon} we find that:
Our solution, based on Eq. 15, is that dmin ! z1 = z2,  or 

This indicates that whether an object is viewable or not simply depends on the horizon distances of both the observer
and the object, where z1 and z2 can be calculated by Eqs. (3) and (4).

For instance, if the observer is at sea level h1=0, thus z1=0 and therefor dmin = z2.  This indicates that if you are at sea
level you must be within the object’s horizon distance.  If one is at sea level (z1=0) and d  > dmin  the only way to
possibly view the object would be to increase you elevation (h1) until z1 + z2 > d.  This is demonstrated below in the
following three sets of diagrams shown in Fig. 5, below.

 

            (a) z1 + z2 < d      (b) z1 + z2 = d                                        (c) z1 + z2 > d

Fig. 5 shows how the line of sight varies for the corresponding horizon configurations.  In sequence, the observer’s
height is increased, thus increasing the observer’s horizon.   In (a) the observer is at a relatively low height with a
minimal horizon distance, thus the line of sight is below the observer’s horizon (λ < 0).   In (b) the observer’s height
is increased such that the observer’s horizon is parallel with the object’s horizon.  In this case, it can be seen that the
line of sight to the object is on the observer’s horizon (λ = 0).  In (c) the increased height causes the observer’s
horizon to overlap the object’s horizon.  In this case the object rises above the observer’s horizon and is thus
viewable (λ > 0).

V. Summary
It can be seen from Fig. 5 that whether an object is above the horizon and thus viewable simply depends on the sum
of the observer's horizon z1 and object's horizon z2.  In summary, the three conditions are as follows: 
1. If  z1 + z2 < d the object is below the horizon and not viewable.
2. If z1 + z2 = d the object is on horizon and not likely viewable.
3. If  z1 + z2 > d the object is above the horizon and viewable.  The angle above the horizon can then be calculated by
Eq. (14), the elevation angle formula.  Whether object is actually viewable will also depend on seeing conditions and
actual distance to the horizon.  Objects over 100 miles away at sea level will become more and more difficult to see.


